The restricted isometry property and its implications for compressed sensing

نویسندگان

  • Emmanuel J. Candès
  • Yves Meyer
چکیده

It is now well-known that one can reconstruct sparse or compressible signals accurately from a very limited number of measurements, possibly contaminated with noise. This technique known as “compressed sensing” or “compressive sampling” relies on properties of the sensing matrix such as the restricted isometry property. In this Note, we establish new results about the accuracy of the reconstruction from undersampled measurements which improve on earlier estimates, and have the advantage of being more elegant. To cite this article: E.J. Candès, C. R. Acad. Sci. Paris, Ser. I 346 (2008).  2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé La propriété d’isométrie restreinte et ses conséquences pour le compressed sensing. Il est maintenant bien connu que l’on peut reconstruire des signaux compressibles de manière précise à partir d’un nombre étonnamment petit de mesures, peutêtre même bruitées. Cette technique appelée le “compressed sensing” ou “compressive sampling” utilise des propriétés de la matrice d’échantillonage comme la propriété d’isométrie restreinte. Dans cette Note, nous présentons de nouveaux résultats sur la reconstruction de signaux à partir de données incomplètes qui améliorent des travaux précedents et qui, en outre, ont l’avantage d’être plus élégants. Pour citer cet article : E.J. Candès, C. R. Acad. Sci. Paris, Ser. I 346 (2008).  2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implications in Compressed Sensing and the Restricted Isometry Property

We present a simple method for verifying the restricted isometry property. The results of applying the proposed method are more flexible than that of Candès. In this note, we establish new results about the accuracy of reconstruction from undersampled measurements, which may make it possible to improve estimation.

متن کامل

A remark on weaken restricted isometry property in compressed sensing

The restricted isometry property (RIP) has become well-known in the compressed sensing community. Recently, a weaken version of RIP was proposed for exact sparse recovery under weak moment assumptions. In this note, we prove that the weaken RIP is also sufficient for stable and robust sparse recovery by linking it with a recently introduced robust width property in compressed sensing. Moreover,...

متن کامل

A Compressed Introduction to Compressed Sensing

We attempt to convey a sense of compressed sensing. Specifically, we discuss how `1 minimization and the restricted isometry property for matrices can be used for sparse recovery of underdetermined linear systems even in the presence of noise.

متن کامل

Orthogonal Matching Pursuit with random dictionaries

In this paper we investigatet the efficiency of the Orthogonal Matching Pursuit for random dictionaries. We concentrate on dictionaries satisfying Restricted Isometry Property. We introduce a stronger Homogenous Restricted Isometry Property which is satisfied with overwhelming probability for random dictionaries used in compressed sensing. We also present and discuss some open problems about OMP.

متن کامل

A generalization of restricted isometry property and applications to compressed sensing

This paper introduces a new general theory of compressed sensing. We give a natural generalization of the restricted isometry property (RIP) called weak RIP. We consider the proposed theory to be more useful for real data analysis than the RIP. In this note, we verify the accuracy of the weak RIP by showing in reconstruction from undersampling measurements where it is possible to improve estima...

متن کامل

Noisy 1-Bit Compressed Sensing Embeddings Enjoy a Restricted Isometry Property

We investigate the sign-linear embeddings of 1-bit compressed sensing given by Gaussian measurements. One can give short arguments concerning a Restricted Isometry Property of such maps using Vapnik-Chervonenkis dimension of sparse hemispheres. This approach has a natural extension to the presence of additive white noise prior to quantization. Noisy one-bit mappings are shown to satisfy an RIP ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008